
Event-based Systems with ROS:
Examples from the STAIR Project

Morgan Quigley
Stanford University

Joint work with:
Stanford: Blake Carpenter, Adam Coates, Quoc Le, Ellen Klingbeil, Andrew Ng, many others

Willow Garage: Eric Berger, Ken Conley, Brian Gerkey, many others



Motivation

• Personal robotics: a general-purpose robot in 
every home and workplace

• Long-standing AI dream



Overview: STAIR Project

• “STAIR, please fetch the stapler from my office”

– Speech recognition

– Navigation: driving, doors, elevators

– Vision: target objects, grasp points

– Manipulation

• One team for each major component

• Components need to work seamlessly on robot

• How to best integrate them?



Experiments: 2006

• Framework with static connections, 
synchronous top-level executive

• 5 machines

• ~25 modules

• Explicit links

• Hard to modify



Dilemma

• More components can allow more applications

• More components can lead to nasty bugs and 
versioning nightmares

Speech

Navigation

Vision

Door opening

Manipulation

Planning

NavigationDoor opening
Old message type



ROS: a Robot Operating System

• A framework for robot software:

– finding, getting, writing, debugging, running

• UNIX-inspired

– command-line friendly

– many small tools

– cross-language, cross-platform

– fully open-source (BSD)

• Efficient: runs entire robot

• Streams vs. Events vs. Data Flow?



ROS: high-level

• Peer-to-peer

– small programs connect to each other at runtime

– “master” (registrar) node provides name service

• Runtime system: graph analogy

– processes = nodes

– P2P connections = directed edges
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ROS: high-level

• Minimalist interface definition language (IDL)

• Native message objects generated from IDL

• Serialization, deserialization, helpers, etc.

• Actual IDL files:

Header header

string[] name

float64[] position

float64[] velocity

float64[] effort

time map_load_time

float32 resolution

Uint32 width

Uint32 height

Pose origin

MapMetaData info

Byte[] data

JointState.msg MapMetaData.msg OccupancyGrid.msg

191 lines of C++
218 lines of Python
71 lines of LISP

150 lines of C++
132 lines of Python
112 lines of LISP

241 lines of C++
256 lines of Python
192 lines of LISP



Publish/Subscribe

• Connections of strongly-typed topics, not nodes

• Nodes don’t know/care about their peers

• Dynamic:

– Anyone can publish at any time to any topic

– Anyone can subscribe at any time to any topic

• ROS manages the plumbing (sockets, etc.)
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Services

• Alternative communications model: RPC

• Can simplify code in some cases

• Can create bottlenecks in some cases

• We prefer publish/subscribe, but don’t want 
to be overly dogmatic

• Use case: knowledge base query
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Command-line Tools

• Debugging is a huge part of building robots

• Our opinion: command-line tools are ideal

– Simple scripts can build more complex tools

– Easy to run on headless machines, small overhead

• Samples:

rostopic list

rostopic echo TOPIC_NAME[S]

rosrecord TOPIC_NAME[S]

rosplay RECORDING_FILE

rosnode info NODE_NAME

roswtf



Command-line ̀ `Remapping’’

• Topic and service names are hard-coded

• Makes source code easy to read

• Optional: override names on command line

• OLD_TOPIC := NEW_TOPIC

• Allows configuration without recompiling

./hokuyo_node scan:=base_scan

./hokuyo_node scan:=tilt_scan



Launch Files

• Command-line execution is great for debugging

• Become tiresome once the system works

• Launch files: XML to automate startup/teardown

• Run many programs from a single shell

• Kill them all with one Ctrl-C

• Typically, launch files for drivers, low-level nodes, 
high-level nodes, and work in progress

• Easily create unit (or small-group) test suites



Code Organization

• Package: build system unit

– Just directories in repositories; little structure

– Recursive build tool: rosmake

• Stacks: groups of packages

• Distributions: collections of stacks

• >14 repos, >400 packages available
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Live Demo: 2-d Navigation Simulator

• ROS wrappings of the Stage simulator

• See ros.org for installation instructions

• Tools demonstrated:

– rxgraph: live view of process interconnections

– rostopic: print message streams to the console

– rosnode: print publications/subscriptions of nodes

– But wait, there’s more!  See ros.org



Experiments: 2008

• Asynchronous connections via ROS

• Synchronous top-level executive (ruby script)

• Large backend



Experiments: 2009

• Asynchronous connections via ROS

• Coarse world model updated asynchronously

• Executive as functions of world model

• Email to send tasks
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Lessons Learned

• Given sufficient hacking time, anything can work

• But, event-based systems scale more gracefully

– Less painful to run and debug

– Less painful to make more robust

– Fewer assumptions hard-coded: less brittle

– Code re-use is easier



Conclusion

• ROS supports publish/subscribe messaging

• Very few assumptions built into ROS

• Any number of systems can be built on top of it

• Much, much more available than discussed here

ros.org



Event-based Systems with ROS:
Examples from the STAIR Project

Morgan Quigley
Stanford University

Joint work with:
STAIR: Quoc Le, Ellen Klingbeil, Blake Carpenter, Andrew Ng
ROS: Eric Berger, Ken Conley, Brian Gerkey, and many others


