
Event-based Systems with ROS:
Examples from the STAIR Project

Morgan Quigley
Stanford University

Joint work with:
Stanford: Blake Carpenter, Adam Coates, Quoc Le, Ellen Klingbeil, Andrew Ng, many others

Willow Garage: Eric Berger, Ken Conley, Brian Gerkey, many others

Motivation

• Personal robotics: a general-purpose robot in
every home and workplace

• Long-standing AI dream

Overview: STAIR Project

• “STAIR, please fetch the stapler from my office”

– Speech recognition

– Navigation: driving, doors, elevators

– Vision: target objects, grasp points

– Manipulation

• One team for each major component

• Components need to work seamlessly on robot

• How to best integrate them?

Experiments: 2006

• Framework with static connections,
synchronous top-level executive

• 5 machines

• ~25 modules

• Explicit links

• Hard to modify

Dilemma

• More components can allow more applications

• More components can lead to nasty bugs and
versioning nightmares

Speech

Navigation

Vision

Door opening

Manipulation

Planning

NavigationDoor opening
Old message type

ROS: a Robot Operating System

• A framework for robot software:

– finding, getting, writing, debugging, running

• UNIX-inspired

– command-line friendly

– many small tools

– cross-language, cross-platform

– fully open-source (BSD)

• Efficient: runs entire robot

• Streams vs. Events vs. Data Flow?

ROS: high-level

• Peer-to-peer

– small programs connect to each other at runtime

– “master” (registrar) node provides name service

• Runtime system: graph analogy

– processes = nodes

– P2P connections = directed edges

Camera
driver

Face
recognition

Speech
synthesis

Audio
driver

“Hello”

Master (name service)

ROS: high-level

• Minimalist interface definition language (IDL)

• Native message objects generated from IDL

• Serialization, deserialization, helpers, etc.

• Actual IDL files:

Header header

string[] name

float64[] position

float64[] velocity

float64[] effort

time map_load_time

float32 resolution

Uint32 width

Uint32 height

Pose origin

MapMetaData info

Byte[] data

JointState.msg MapMetaData.msg OccupancyGrid.msg

191 lines of C++
218 lines of Python
71 lines of LISP

150 lines of C++
132 lines of Python
112 lines of LISP

241 lines of C++
256 lines of Python
192 lines of LISP

Publish/Subscribe

• Connections of strongly-typed topics, not nodes

• Nodes don’t know/care about their peers

• Dynamic:

– Anyone can publish at any time to any topic

– Anyone can subscribe at any time to any topic

• ROS manages the plumbing (sockets, etc.)

Localization

Laser

Odometry

Map

Estimated Pose

Services

• Alternative communications model: RPC

• Can simplify code in some cases

• Can create bottlenecks in some cases

• We prefer publish/subscribe, but don’t want
to be overly dogmatic

• Use case: knowledge base query

Knowledge
Base

Query service

Command-line Tools

• Debugging is a huge part of building robots

• Our opinion: command-line tools are ideal

– Simple scripts can build more complex tools

– Easy to run on headless machines, small overhead

• Samples:

rostopic list

rostopic echo TOPIC_NAME[S]

rosrecord TOPIC_NAME[S]

rosplay RECORDING_FILE

rosnode info NODE_NAME

roswtf

Command-line ̀ `Remapping’’

• Topic and service names are hard-coded

• Makes source code easy to read

• Optional: override names on command line

• OLD_TOPIC := NEW_TOPIC

• Allows configuration without recompiling

./hokuyo_node scan:=base_scan

./hokuyo_node scan:=tilt_scan

Launch Files

• Command-line execution is great for debugging

• Become tiresome once the system works

• Launch files: XML to automate startup/teardown

• Run many programs from a single shell

• Kill them all with one Ctrl-C

• Typically, launch files for drivers, low-level nodes,
high-level nodes, and work in progress

• Easily create unit (or small-group) test suites

Code Organization

• Package: build system unit

– Just directories in repositories; little structure

– Recursive build tool: rosmake

• Stacks: groups of packages

• Distributions: collections of stacks

• >14 repos, >400 packages available

map_server

map_server navigation-0.9.0

Executable Package Stack

baby box turtle

Distribution

Live Demo: 2-d Navigation Simulator

• ROS wrappings of the Stage simulator

• See ros.org for installation instructions

• Tools demonstrated:

– rxgraph: live view of process interconnections

– rostopic: print message streams to the console

– rosnode: print publications/subscriptions of nodes

– But wait, there’s more! See ros.org

Experiments: 2008

• Asynchronous connections via ROS

• Synchronous top-level executive (ruby script)

• Large backend

Experiments: 2009

• Asynchronous connections via ROS

• Coarse world model updated asynchronously

• Executive as functions of world model

• Email to send tasks

Building-Monitor Application

Email
Checker

Knowledge
Base

Localization

Elevator
Door

Detector

Laser

Query
Engine

Query
Engine

Query
Engine

Query
Engine

Email
Sender

Camera

Call Button
Detector

Floor Button
Detector

Motion
Planner

Arm

Robot
Base

Navigation

Lessons Learned

• Given sufficient hacking time, anything can work

• But, event-based systems scale more gracefully

– Less painful to run and debug

– Less painful to make more robust

– Fewer assumptions hard-coded: less brittle

– Code re-use is easier

Conclusion

• ROS supports publish/subscribe messaging

• Very few assumptions built into ROS

• Any number of systems can be built on top of it

• Much, much more available than discussed here

ros.org

Event-based Systems with ROS:
Examples from the STAIR Project

Morgan Quigley
Stanford University

Joint work with:
STAIR: Quoc Le, Ellen Klingbeil, Blake Carpenter, Andrew Ng
ROS: Eric Berger, Ken Conley, Brian Gerkey, and many others

