Event-based Systems with ROS:
Examples from the STAIR Project

Morgan Quigley
Stanford University

Joint work with:
Stanford: Blake Carpenter, Adam Coates, Quoc Le, Ellen Klingbeil, Andrew Ng, many others
Willow Garage: Eric Berger, Ken Conley, Brian Gerkey, many others

Motivation

* Personal robotics: a general-purpose robot in
every home and workplace

. Long standmg AI dream

Overview: STAIR Project

e “STAIR, please fetch the stapler from my office”
— Speech recognition
— Navigation: driving, doors, elevators
— Vision: target objects, grasp points
— Manipulation

* One team for each major component
* Components need to work seamlessly on robot
* How to best integrate them?

Experiments: 2006

* Framework with static connections,
synchronous top-level executive

* 5 machines
e ~25 modules

* Explicitlinks
* Hard to modify

real time

Dilemma

* More components can allow more applications

Navigation |

Manipulation

Planning

Vision

Door opening

* More components can lead to nasty bugs and
versioning nightmares

Old message type

ROS: a Robot Operating System

A framework for robot software:
— finding, getting, writing, debugging, running
UNIX-inspired 8
— command-line friendly 3
— many small tools

— cross-language, cross-platform

— fully open-source (BSD)
Efficient: runs entire robot
Streams vs. Events vs. Data Flow?

ROS: high-level

* Peer-to-peer
— small programs connect to each other at runtime
— “master” (registrar) node provides name service
* Runtime system: graph analogy
— processes = nodes
— P2P connections = directed edges

_ - Master (name service) -~ o
P ~
, N

/ PR NS \

Camera Face Speech

o ”n
: v . Hello
driver recognition synthesis

ROS: high-level

 Minimalistinterface definition language (IDL)

* Native message objects generated from IDL

e Serialization, deserialization, helpers, etc.

e Actual IDL files:

JointState.msg

MapMetaData.msg

OccupancyGrid.msg

Header header
string[] name
float64d[] position
floated[] velocity
float6d[] effort

time map load time
float32 resolution
Uint32 width
Uint32 height

Pose origin

MapMetaData info
Byte[] data

241 lines of C++
256 lines of Python
192 lines of LISP

150 lines of C++
132 lines of Python
112 lines of LISP

191 lines of C++
218 lines of Python
71 lines of LISP

Publish/Subscribe

Connections of strongly-typed topics, not nodes

Nodes don’t know/care about their peers

Dynamic:

— Anyone can publish at any time to any topic

— Anyone can subscribe at any time to any topic

ROS manages the plumbing (sockets, etc.)

L
aser >
Od t
ometry
M
ap q

(’

Localization

"'\

Estimated Pose >

Alternative communications model: RPC

Services

Can simplify code in some cases

Can create bottlenecks in some cases
We prefer publish/subscribe, but don’t want

to be overly dogmatic

Use case: knowledge base query

<€

Query service

>

(’

Knowledge
Base

Command-line Tools

* Debuggingis a huge part of building robots
* Quropinion: command-line tools are ideal

— Simple scripts can build more complex tools
— Easy to run on headless machines, small overhead

* Samples:

rostopic list

rostopic echo TOPIC NAME[S]
rosrecord TOPIC NAME[S]
rosplay RECORDING FILE
rosnode info NODE NAME
roswtf

Command-line Remapping’”

Topic and service names are hard-coded
Makes source code easy to read

Optional: override names on command line
OLD TOPIC :=

Allows configuration without recompiling

. /hokuyo node
. /hokuyo node

NEW_TOPIC

scan:=base scan
scan:=tilt scan

Launch Files

Command-line execution is great for debugging
Become tiresome once the system works

Launch files: XML to automate startup/teardown
Run many programs from a single shell

Kill them all with one Ctrl-C

Typically, launch files for drivers, low-level nodes,
high-level nodes, and work in progress

Easily create unit (or small-group) test suites

Code Organization

e Package: build system unit

— Just directories in repositories; little structure

— Recursive build tool: rosmake

e Stacks: groups of packages

e Distributions: collections of stacks
 >14 repos, >400 packages available

Executable

Package

Stack

Distribution

Live Demo: 2-d Navigation Simulator

 ROS wrappings of the Stage simulator
* See ros.org for installation instructions
* Tools demonstrated:

— rxgraph: live view of process interconnections

— rostopic: print message streams to the console

— rosnode: print publications/subscriptions of nodes
— But wait, there’s more! See ros.org

Experiments: 2008

* Asynchronous connectionsvia ROS
* Synchronoustop-level executive (ruby script)
* Large backend

Experiments: 2009

Asynchronous connectionsvia ROS

Coarse world model updated asynchronously

Executive as functions of world model

Email to send tasks

; ¢
|
/. poonnonnon

=

gaaannnnoe
mRnonm -

B i

3

:

Building-Monitor Application

Email
Checker

Elevator
Door
Detector

Knowledge

ENE .

Localization

Query Email
Engine Sender

Camera

Query Call Button Motion
Engine Detector Planner

Query Floor Button
Engine Detector

Query
Engine

Navigation

Lessons Learned

* Given sufficient hacking time, anything can work

* But, event-based systems scale more gracefully
— Less painful to run and debug
— Less painful to make more robust
— Fewer assumptions hard-coded: less brittle
— Code re-use is easier

Conclusion

ROS supports publish/subscribe messaging

Very few assumptions built into ROS

Any number of systems can be built on top of it
Much, much more available than discussed here

ros.org

Event-based Systems with ROS:
Examples from the STAIR Project

Morgan Quigley
Stanford University
Joint work with:
STAIR: Quoc Le, Ellen Klingbeil, Blake Carpenter, Andrew Ng
ROS: Eric Berger, Ken Conley, Brian Gerkey, and many others

