A Probabilistic Approach to Grasp Planning

Peter Brook

Department of Computer Science
University of Washington

September 23, 2010
What is grasp planning?

Given an object:

- Find a suitable pose for the gripper - 6D search space
- Find a suitable configuration of the hand joints - nD search space
Why is Grasp Planning Easy for Humans?

A Probabilistic Approach to Grasp Planning

Peter Brook
Why is Grasp Planning Hard for Robots?

Peter Brook

A Probabilistic Approach to Grasp Planning
Uncertainty in grasp planning

Grasp planning requires knowledge of:
- a gripper
- an object

These are observed via sensors
Uncertainty in grasp planning

Real scene

Sensed scene
Uncertainty in grasp planning

Is incomplete or noisy world information a problem?
Uncertainty in grasp planning

Yes.

Sensed scene

Object detection error

Peter Brook

A Probabilistic Approach to Grasp Planning
A Probabilistic Approach to Grasp Planning

Peter Brook
ROS Grasping Pipeline

A Probabilistic Approach to Grasp Planning

Peter Brook
ROS Grasping Pipeline

- **Motivation**
- **Planner Overview**
- **Evaluation**
- **Conclusion**

A Probabilistic Approach to Grasp Planning

- **3D Perception**
- **Scene Interpretor**
- **Object Model Registration**
- **Collision Map Generation**

- **Object Model Database**

- **Grasp Planning for known objects**
- **Grasp Planning for unknown objects**

- **Grasp Selection**
- **Motion Planning**

- **Grasp Execution**
- **Tactile Feedback**
ROS Grasping Pipeline

- **3D Perception**
 - Collision Map Generation
 - Scene Interpreter
 - Object Model Registration
- **Object Model Database**
- **Grasp Planning**
 - for unknown objects
 - for known objects
- **Grasp Selection**
- **Motion Planning**
 - Grasp Execution
 - Tactile Feedback

A Probabilistic Approach to Grasp Planning

Peter Brook
Handling Object Detection Uncertainty

Key Points

- Every guess about the object is a representation
- Choose grasps which work well on available representations

Peter Brook
A Probabilistic Approach to Grasp Planning
Handling Object Detection Uncertainty

Key Points

- Every guess about the object is a representation
- Choose grasps which work well on available representations
Handling Object Detection Uncertainty

Key Points

- Every guess about the object is a representation
- Choose grasps which work well on available representations
How do we Know if a Grasp is Good?

▶ **evaluate** grasp on all representations
How do we Know if a Grasp is Good?

- evaluate grasp on all representations

For point cluster grasps:

- Heuristic quality measures
How do we Know if a Grasp is Good?

- **evaluate** grasp on all representations
 - For point cluster grasps:
 - Heuristic quality measures
 - For database objects:
 - Evaluate grasp in simulation (expensive)
How do we Know if a Grasp is Good?

- **evaluate grasp** on all representations
 - For point cluster grasps:
 - Heuristic quality measures
 - For database objects:
 - Evaluate grasp in simulation (expensive)
 - Use **data-driven regression** for evaluation
Gripper Pose Uncertainty

Bonus: regression helps with gripper pose uncertainty
A Probabilistic Approach to Grasp Planning
Reasoning About Uncertainty Helps

A Probabilistic Approach to Grasp Planning

Peter Brook
Reasoning About Uncertainty Helps

A Probabilistic Approach to Grasp Planning

Peter Brook

Percentage of ‘Good’ Grasps

Planner-Estimated Probability

Naive Planner

Naive Planner (leave-one-out)

Probabilistic Planner

Probabilistic Planner (leave-one-out)
Experimental Success Results

<table>
<thead>
<tr>
<th></th>
<th>prob. planner</th>
<th>naive planner</th>
</tr>
</thead>
<tbody>
<tr>
<td>leave-one-out</td>
<td>22/25</td>
<td>18/25</td>
</tr>
<tr>
<td>regular detection</td>
<td>22/25</td>
<td>21/25</td>
</tr>
</tbody>
</table>

Table: Number of objects successfully grasped and lifted on the PR2 robot.
Potential for Extension

- More representations
 - Primitives (spheres, cylinders, boxes, etc.)
 - Primitive hierarchies

- More detectors (recognition pipeline)
 - Don’t hide the uncertainty
 - Detector feedback: similar objects should be grasped similarly

- More objects
 - Few objects: no generalization
 - 50 objects: some generalization
 - 1000s of objects: complete generalization?
Can we Trust Our Sensors?

Peter Brook
Online Tuning

Motivation

Planner Overview

Evaluation

Conclusion

Peter Brook

A Probabilistic Approach to Grasp Planning
Code Availability

- **Planner code:** `probabilistic_grasp_planner`
- **Documentation:**

- **Integrated with trunk of grasping pipeline**

- **Will be released with the 0.3 release of**

 `object_manipulation`
Thanks!

Matei and Kaijen are awesome!
Questions?