Search-based Planning with Motion Primitives

Maxim Likhachev
Carnegie Mellon University

What is Search-based Planning

- generate a graph representation of the planning problem
- search the graph for a solution
- can interleave the construction of the representation with the search (i.e., construct only what is necessary)

2D grid-based graph representation for 2D (x, y) search-based planning:

lattice-based graph representation for 3D (x, y, θ) planning:

motion primitives

Search-based Planning Library (SBPL)

- http://www.ros.org/wiki/sbpl
- SBPL is:
- a library of domain-independent graph searches
- a library of environments (planning problems) that represent the problems as graph search problems
- designed to be so that the same graph searches can be used to solve a variety of environments (graph searches and environments are independent of each other)
- a standalone library that can be used with or without ROS and under linux or windows

Search-based Planning Library (SBPL)

- http://www.ros.org/wiki/sbpl
- \quad SBPL can be used to:
- implement particular planning modules such as x, y, θ planning and arm motion planning modules within ROS
- design and drop-in new environments (planning problems) that represent the problem as a graph search and can therefore use existing graph searches to solve them
- design and drop-in new graph searches and test their performance on existing environments

Planning module

- receives map, pose and goal updates
- updates environment (graph)
- calls graph search to re-plan

Search-based Planning Library (SBPL)

- Currently implemented graph searches within SBPL:
- ARA* - anytime version of A*
- Anytime D* - anytime incremental version of A*
- \quad R* - a randomized version of A* (hybrid between deterministic searches and samplingbased planning)
- Currently implemented environments (planning problems) within SBPL:
- 2D (x, y) grid-based planning problem
- 3D (x, y, θ) lattice-based planning problem
- 3D (x, y, θ) lattice-based planning problem with 3D (x, y, z) collision checking
- \quad N-DOF planar robot arm planning problem
- ROS packages that use SBPL:
- \quad SBPL lattice global planner for (x, y, θ) planning for navigation
- SBPL cart planner for PR2 navigating with a cart
- SBPL motion planner for PR2 arm motions
- default move_base invokes SBPL lattice global planner as part of escape behavior
- Unreleased ROS packages and other planning modules that use SBPL:
- \quad SBPL door planning module for PR2 opening and moving through doors
- SBPL planning module for navigating in dynamic environments
- 4D planning module for aerial vehicles (x, y, z, θ)

What I will talk about

- Graph representations (implemented as environments for SBPL)
- $\quad 3 \mathrm{D}(x, y, \theta)$ lattice-based graph (within SBPL)
- 3D (x, y, θ) lattice-based graph for 3D (x, y, z) spaces (within SBPL)
- Cart planning (separate SBPL-based package)
- Lattice-based arm motion graph (separate SBPL-based motion planning module)
- Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
- ARA* - anytime version of A*
- Anytime D* - anytime incremental version of A*
- $\quad \mathrm{R}^{*}$ - a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

Lattice-based Graphs for Navigation

- Problems with (very popular) pure grid-based planning

2D grid-based graph representation for 2D (x, y) search-based planning:

sharp turns do not incorporate the kinodynamics constraints of the robot

Lattice-based Graphs for Navigation

- Problems with (very popular) pure grid-based planning

2D grid-based graph representation for 2D (x, y) search-based planning:

$3 D$-grid (x, y, θ) would help a bit but won't resolve the issue

Lattice-based Graphs for Navigation

- Graphs constructed using motion primitives [Pivtoraiko \& Kelly, '05] outcome state is the center of the corresponding cell in the underlying (x, y, θ, \ldots) cell

Lattice-based Graphs for Navigation

- Graphs constructed using motion primitives [Pivtoraiko \& Kelly, '05]
- pros: sparse graph, feasible paths, can incorporate a variety of constraints
- cons: possible incompleteness

Lattice-based Graphs for Navigation

- Graphs constructed using motion primitives [Pivtoraiko \& Kelly, '05]
- pros: sparse graph, feasible paths, can incorporate a variety of constraints
- cons: possible incompleteness
planning on $4 D(<x, y$, orientation, velocity $>)$ multi-resolution lattice using Anytime D^{*}
[Likhachev \& Ferguson, '09]

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

Lattice-based Graphs for Navigation

- Graphs constructed using motion primitives [Pivtoraiko \& Kelly, '05]
- pros: sparse graph, feasible paths, can incorporate a variety of constraints
- cons: possible incompleteness
planning in $8 D$ (foothold planning) lattice-based graph for quadrupeds [Vernaza et al., '09] using R^{*} search [Likhachev \& Stentz, '08]

Lattice-based Graphs for Navigation

-3D (x, y, θ) lattice-based graph representation (environment_navxythetalat.h/cpp in SBPL)

- takes set of motion primitives as input (.mprim files generated within matlab/mprim directory using corresponding matlab scripts):

or ...

- takes the footprint of the robot defined as a polygon as input

Lattice-based Graphs for Navigation

-3D (x, y, θ) lattice-based graph representation for $3 \mathrm{D}(x, y, z)$ spaces (environment_navxythetamlevlat.h/cpp in SBPL)

- takes set of motion primitives as input
- takes N footprints of the robot defined as polygons as input.
- each footprint corresponds to the projection of a part of the body onto x, y plane.
- collision checking/cost computation is done for each footprint at the corresponding projection of the 3D map

Graph Representation for Cart Planning

[Scholz, Marthi, Chitta \& Likhachev, in submission]

- 3D $\left(x, y, \theta, \theta_{\text {cart }}\right)$ lattice-based graph representation (in a separate Cart Planner package)
- takes set of motion primitives feasible for the coupled robot-cart system as input (arm motions generated via IK)
- takes footprints of the robot and the cart defined as polygons as input

Graph Representation for Arm Planning

[Cohen, Chitta \& Likhachev, ICRA'10; Cohen et al., in submission]

-7D (joint angles) lattice-based graph representation (in a separate SBPL Arm Planner package)

- takes set of motion primitives defining joint angle changes as input \qquad
- takes joint angle limits and link widths
- goal is a 6 DoF pose for the end-effector

Graph Representation for Door Opening Planning

 [Chitta, Cohen \& Likhachev, ICRA'10]- 4D (x, y, θ,door interval) graph representation (in a separate SBPL Door Planner package)
- takes set of motion primitives defining feasible x, y, θ, door angles in the door frame as input
- goal is for the door to be fully open
- suitable for pushing/pulling doors

What I will talk about

- Graph representations (implemented as environments for SBPL)
- 3D (x, y, θ) lattice-based graph (within SBPL)
- 3D (x, y, θ) lattice-based graph for 3D (x, y, z) spaces (within SBPL)
- Cart planning (separate SBPL-based package)
- Lattice-based arm motion graph (separate SBPL-based motion planning module)
- Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
- ARA* - anytime version of A*
- Anytime D* - anytime incremental version of A*
- $\quad \mathrm{R}^{*}$ - a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

Searching Graphs

- Once a graph is given (defined by environment file in SBPL), we need to search it for a path that minimizes cost as much as possible

Searching Graphs

- Many searches work by computing optimal g-values for relevant states
$-g(s)$ - an estimate of the cost of a least-cost path from $s_{\text {start }}$ to s
- optimal values satisfy: $\quad g(s)=\min _{s^{\prime \prime} \in \operatorname{pred}(s)} g\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s\right)$ the cost $c\left(s_{l}, s_{\text {goal }}\right)$ of an edge from s_{1} to $s_{\text {goal }}$

Searching Graphs

- Many searches work by computing optimal g-values for relevant states
$-g(s)$ - an estimate of the cost of a least-cost path from $s_{\text {start }}$ to s
- optimal values satisfy: $\quad g(s)=\min _{s^{\prime \prime} \in \operatorname{pred}(s)} g\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s\right)$ the cost $c\left(s_{l}, s_{\text {goal }}\right)$ of an edge from s_{1} to $s_{\text {goal }}$

Searching Graphs

- Least-cost path is a greedy path computed by backtracking:
- start with $s_{g o a l}$ and from any state s move to the predecessor state s^{\prime} such that

$$
s^{\prime}=\arg \min _{s^{\prime \prime} \in \operatorname{pred}(s)}\left(g\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s\right)\right)
$$

A* Search

- Computes optimal g-values for relevant states

at any point of time:

A* Search

- Computes optimal g-values for relevant states

at any point of time:

one popular heuristic function - Euclidean distance

A* Search

- Heuristic function must be:
- admissible: for every state s, $h(s) \leq c^{*}\left(s, s_{\text {goal }}\right)$
- consistent (satisfy triangle inequality):

$$
h\left(s_{\text {goal }} s_{\text {gaal }}\right)=0 \text { and for every } s \neq s_{\text {goal }} h(s) \leq c(s, s u c c(s))+h(s u c c(s))
$$

- admissibility follows from consistency and often consistency follows from admissibility

A* Search

- Computes optimal g-values for relevant states

Main function

$g\left(s_{\text {start }}\right)=0$; all other g-values are infinite; $O P E N=\left\{s_{\text {start }}\right\}$;
ComputePath(); publish solution;

ComputePath function

```
set of candidates for expansion
``` while ( \(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from OPEN; expand \(s\);


\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while \(\left(s_{\text {goal }}\right.\) is not expanded \()\)
remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); expand \(s\);

\section*{A* Search}

\section*{- Computes optimal g-values for relevant states}

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
if \(g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right)\)
\(g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ;\)
set of states that have already been expanded
tries to decrease \(g\left(s^{\prime}\right)\) using the
found path from \(s_{\text {start }}\) to \(s\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into \(O P E N\);

CLOSED \(=\{ \}\) OPEN \(=\left\{s_{\text {start }}\right\}\)
next state to expand: \(s_{\text {start }}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right) \\
& g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ; \\
& \text { insert } s^{\prime} \text { into OPEN; }
\end{aligned}
\]

CLOSED \(=\{ \}\) OPEN \(=\left\{s_{\text {start }}\right\}\)
next state to expand: \(s_{\text {start }}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED; for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into \(O P E N\);

CLOSED \(=\left\{s_{\text {start }}\right\}\) OPEN \(=\left\{s_{2}\right\}\)
next state to expand: \(s_{2}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into OPEN;

CLOSED \(=\left\{s_{\text {start }}, s_{2}\right\}\) OPEN \(=\left\{s_{1}, s_{4}\right\}\)
next state to expand: \(s_{1}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into \(O P E N\);

CLOSED \(=\left\{s_{\text {start }}, s_{2}, s_{1}\right\}\) OPEN \(=\left\{s_{4}, s_{\text {goal }}\right\}\)
next state to expand: \(s_{4}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

CLOSED \(=\left\{s_{\text {start }} s_{2}, s_{1}, s_{4}\right\}\) OPEN \(=\left\{s_{3}, s_{\text {goal }}\right\}\)
next state to expand: \(s_{\text {goal }}\)

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into \(O P E N\);

CLOSED \(=\left\{s_{\text {start }} s_{2}, s_{1}, s_{4}, s_{\text {goal }}\right\}\) OPEN \(=\left\{s_{3}\right\}\)
done

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into OPEN;

\section*{A* Search}
- Computes optimal g-values for relevant states

\section*{ComputePath function}
while (\(s_{\text {goal }}\) is not expanded) remove \(s\) with the smallest \([f(s)=g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
for every successor \(s\) ' of \(s\) such that \(s\) ' not in \(C L O S E D\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right) ;
\end{aligned}
\]
insert \(s\) ' into OPEN;

\section*{A* Search}
- Is guaranteed to return an optimal path (in fact, for every expanded state) - optimal in terms of the solution
- Performs provably minimal number of state expansions required to guarantee optimality - optimal in terms of the computations

\section*{Effect of the Heuristic Function}
- A* Search: expands states in the order of \(f=g+h\) values
- Dijkstra's: expands states in the order of \(f=g\) values (pretty much)
- Intuitively: \(f(s)\) - estimate of the cost of a least cost path from start to goal via s

\section*{Effect of the Heuristic Function}
- A* Search: expands states in the order of \(f=g+h\) values
- Dijkstra's: expands states in the order of \(f=g\) values (pretty much)
- Weighted A*: expands states in the order of \(f=g+\varepsilon h\) values, \(\varepsilon>l=\) bias towards states that are closer to goal

\section*{Effect of the Heuristic Function}
- Dijkstra's: expands states in the order of \(f=g\) values

\section*{Effect of the Heuristic Function}
- A* Search: expands states in the order of \(f=g+h\) values

\section*{Effect of the Heuristic Function}
- A* Search: expands states in the order of \(f=g+h\) values
for large problems this results in \(A^{*}\) quickly running out of memory (memory: \(O(n)\))

\section*{Effect of the Heuristic Function}
- Weighted \(\mathrm{A}^{*}\) Search: expands states in the order of \(f=\) \(g+\varepsilon h\) values, \(\varepsilon>1=\) bias towards states that are closer to goal

\section*{Effect of the Heuristic Function}
- Weighted A* Search:
- trades off optimality for speed
- \(\varepsilon\)-suboptimal: \(\operatorname{cost}(\) solution \() \leq \varepsilon \operatorname{cost}(\) optimal solution)
- in many domains, it has been shown to be orders of magnitude faster than \(\mathrm{A}^{*}\)
- research becomes to develop a heuristic function that has shallow local minima

\section*{Effect of the Heuristic Function}
- Weighted A* Search:
- trades off optimality for speed
- \(\varepsilon\)-suboptimal: \(\operatorname{cost}(\) solution \() \leq \varepsilon \operatorname{cost}(\) optimal solution)
- in many domains, it has been shown to be orders of magnitude faster than \(\mathrm{A}^{*}\)
- research becomes to develop a heuristic function that has shallow local minima

\section*{Effect of the Heuristic Function}
- Constructing anytime search based on weighted A*:
- find the best path possible given some amount of time for planning
- do it by running a series of weighted \(\mathrm{A}^{*}\) searches with decreasing \(\varepsilon\) :

13 expansions
solution=11 moves

15 expansions
solution=11 moves

20 expansions
solution \(=10\) moves

\section*{Effect of the Heuristic Function}
- Constructing anytime search based on weighted \(\mathrm{A}^{*}\) :
- find the best path possible given some amount of time for planning
- do it by running a series of weighted \(\mathrm{A}^{*}\) searches with decreasing \(\varepsilon\) :

13 expansions solution= 11 moves

15 expansions
solution=11 moves

20 expansions
solution \(=10\) moves
- Inefficient because
-many state values remain the same between search iterations
-we should be able to reuse the results of previous searches

\section*{Effect of the Heuristic Function}
- Constructing anytime search based on weighted \(\mathrm{A}^{*}\) :
- find the best path possible given some amount of time for planning
- do it by running a series of weighted \(\mathrm{A}^{*}\) searches with decreasing \(\varepsilon\) :

13 expansions solution= 11 moves

15 expansions
solution=11 moves

20 expansions
solution \(=10\) moves
- ARA* [Likhachev, Gordon \& Thrun, ‘04]
- an efficient version of the above that reuses state values within any search iteration
- uses incremental version of A*

\section*{Other Motivation for Incremental A*}
- Reuse state values from previous searches
cost of least-cost paths to \(s_{g o a l}\) initially
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 2 & 2 & 2 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 1 & 1 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & & 9 & & 7 & 6 & 5 & 4 & 3 & 2 & 1 & \(S_{\text {faal }}\) & 1 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 1 & 1 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & & & & 5 & 4 & 3 & 2 & 2 & 2 & 2 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 1 & 0 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline 14 & 13 & 12 & 11 & 11 & 1 & 1 & 7 & 6 & 5 & 5 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline 14 & 13 & 12 & 12 & 12 & 12 & & 7 & 6 & 6 & 6 & 6 & 6 & 6 & 5 & 5 & 5 & 5 \\
\hline
\end{tabular}
cost of least-cost paths to \(s_{\text {goal }}\) after the door turns out to be closed
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 2 & 2 & 2 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 1 & 1 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & & 9 & & 7 & 6 & 5 & 4 & 3 & 2 & 1 & \(S_{\text {goal }}\) & 1 & 2 & 3 \\
\hline 15 & 14 & 13 & 12 & 11 & 12 & 1 & & 7 & & 5 & 4 & 3 & 2 & 1 & 1 & 1 & 2 \\
\hline
\end{tabular}

\section*{Other Motivation for Incremental A*}
- Reuse state values from previous searches
cost of least-cost paths to \(s_{\text {goal }}\) initially
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 2 & 2 & 2 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 1 & 1 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & & 9 & & 7 & 6 & 5 & 4 & 3 & 2 & 1 & \(S_{\text {soal }}\) & 1 & 2 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 14 & 13 & 12 & 11 & 10 \\
\hline 14 & 13 & 12 & 11 & 11 \\
\hline 14 & 13 & 12 & 12 & 12 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline 18 & \(s_{\text {start }}\) & 16 & 15 & 14 & 14 \\
\hline
\end{tabular}

cost of least-cost paths to \(s_{g o a l}\) after the door turns out to be closed
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 2 & 2 & 2 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & & & & 1 & 1 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & & 9 & & 7 & 6 & 5 & 4 & 3 & 2 & 1 & \% & 1 & 2 & 3 \\
\hline & & & & & 0 & & & & 5 & 4 & & 2 & 1 & 1 & 1 & 2 & 3 \\
\hline 15 & 14 & 13 & 12 & 11 & & & 7 & 6 & 5 & 4 & 3 & 2 & 2 & 2 & 2 & 2 & 3 \\
\hline 15 & 14 & 13 & 12 & 12 & \(\mathrm{S}_{\text {sta }}\) & & & & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline 15 & 14 & 13 & 13 & 13 & 13 & & 7 & 6 & 5 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline 15 & 14 & 14 & 14 & 14 & 14 & & 7 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline 15 & 15 & 15 & 15 & 15 & 15 & & 7 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline \multicolumn{5}{|l|}{} & 16 & & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline 21 & 20 & 19 & 18 & 17 & 17 & & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
\hline
\end{tabular}

\section*{Other Motivation for Incremental A*}
- Reuse state values from previous searches
cost of least-cost paths to \(s_{\text {goal }}\) initially
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 2 & 2 & 2 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 1 & 1 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & & 9 & & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 1 & \(S_{60 a l}\) & 1 & 2 \\
\hline & 14 & 13 & 12 & 11 & 10 & 9 & 8 & & & 5 & 4 & 3 & 2 & 3 & 1 & 1 & 1 \\
\hline 14 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & 9 & & & & 5 & 4 & 3 & 2 & 2 & 2 & 2 & 2 & 3 \\
\hline 14 & 13 & 12 & 11 & 10 & & & 7 & 6 & 5 & 4 & 3 & 2 & 2 & 2 & 2 & 3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 14 & 13 & 12 & 11 & 10 & 1 \\
\hline 14 & 13 & 12 & 11 & 11 & 1 \\
\hline 14 & 13 & 12 & 12 & 12 & 1 \\
\hline \multicolumn{7}{|c|}{} & 12 \\
\hline 18 & \(\mathrm{~s}_{\text {sart }}\) & 16 & 15 & 15 & 14 \\
\hline
\end{tabular}
cost of least-cost paths to \(s_{g o a l}\)
Can we reuse these g-values from one search to

Use of Incremental \(\mathrm{A}^{*}\) in \(\mathrm{D}^{*}\) Lite [Koenig \& Likhachev, ‘02] - Reuse state values from previous searches
initial search by backwards A*
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \(S_{\text {coal }}\) & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & \\
\hline \(\mathrm{S}_{\text {ctari }}\) & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
initial search by D* Lite

second search by backwards A*

second search by D* Lite
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{A* with Reuse of State Values}
- Alternative view of \(\mathrm{A}^{*}\)
all \(v\)-values initially are infinite;
ComputePath function
while \(\left(f\left(s_{\text {goal }}\right)>\right.\) minimum \(f\)-value in \(\left.O P E N\right)\)
remove \(s\) with the smallest \([g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED; for every successor \(s\) ' of \(s\)
\[
\text { if } \begin{aligned}
g\left(s^{\prime}\right) & >g(s)+c\left(s, s^{\prime}\right) \\
g\left(s^{\prime}\right) & =g(s)+c\left(s, s^{\prime}\right)
\end{aligned}
\]
insert \(s\) ' into OPEN;

\section*{A* with Reuse of State Values}
- Alternative view of \(\mathrm{A}^{*}\)

remove \(s\) with the smallest \([g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
\(v(s)=g(s)\);
for every successor \(s^{\prime}\) of \(s\)
\[
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right) \\
& g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) \text {; } \\
& \text { insert } s^{\prime} \text { into OPEN; }
\end{aligned}
\]

\section*{A* with Reuse of State Values}
- Alternative view of \(\mathrm{A}^{*}\)
all \(v\)-values initially are infinite;
ComputePath function
while \(\left(f\left(s_{\text {goal }}\right)>\right.\) minimum \(f\)-value in OPEN \()\)
remove \(s\) with the smallest \([g(s)+h(s)]\) from OPEN; insert \(s\) into CLOSED;
\(v(s)=g(s)\);
for every successor \(s\) ' of \(s\)
\[
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right) \\
& g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ; \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
\]
- \(g\left(s^{\prime}\right)=\min _{s^{\prime \prime} \in \operatorname{pred}\left(s^{\prime}\right)} v\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s^{\prime}\right)\)

\section*{A* with Reuse of State Values}
- Alternative view of \(\mathrm{A}^{*}\)
all \(v\)-values initially are infinite;
ComputePath function
while \(\left(f\left(s_{\text {goal }}\right)>\right.\) minimum \(f\)-value in OPEN \()\)
remove \(s\) with the smallest \([g(s)+h(s)]\) from OPEN; insert \(s\) into CLOSED;
\(v(s)=g(s)\);
for every successor \(s\) ' of \(s\)
\[
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right) \\
& g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ; \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
\]
- \(g\left(s^{\prime}\right)=\min _{s^{\prime \prime} \in \operatorname{pred}\left(s^{\prime}\right)} v\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s^{\prime}\right)\)

\section*{A* with Reuse of State Values}
- Alternative view of \(\mathrm{A}^{*}\)
all \(v\)-values initially are infinite;
ComputePath function
while \(\left(f\left(s_{\text {goal }}\right)>\operatorname{minimum} f\right.\)-value in OPEN \()\)
remove \(s\) with the smallest \([g(s)+h(s)]\) from OPEN; insert \(s\) into CLOSED;
\(v(s)=g(s)\);
for every successor \(s\) ' of \(s\)
\[
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right) \\
& g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ; \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
\]
```

overconsistent state

```
- \(g\left(s^{\prime}\right)=\min _{s^{\prime \prime} \in \operatorname{pred}\left(s^{\prime}\right)} v\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s^{\prime}\right) \quad\) consistent state
- OPEN: a set of states with \(v(s)\) all other states have \(v(s)=g(s)\)

\section*{A* with Reuse of State Values}
- Alternative view of \(\mathrm{A}^{*}\)
all \(v\)-values initially are infinite;
ComputePath function
while \(\left(f\left(s_{\text {goal }}\right)>\operatorname{minimum} f\right.\)-value in OPEN \()\)
remove \(s\) with the smallest \([g(s)+h(s)]\) from OPEN; insert \(s\) into CLOSED;
\(v(s)=g(s)\);
for every successor \(s\) ' of \(s\)
\[
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right) \\
& g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ; \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
\]
```

overconsistent state

```
- \(g\left(s^{\prime}\right)=\min _{s^{\prime \prime} \in \operatorname{pred}\left(s^{\prime}\right)} v\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s^{\prime}\right) \quad\) consistent state
- OPEN: a set of states with \(v(s)\) all other states have \(v(s)=g(s)\)

\section*{A* with Reuse of State Values}
- Alternative view of \(\mathrm{A}^{*}\)
all \(v\)-values initially are infinite;
ComputePath function
while \(\left(f\left(s_{\text {goal }}\right)>\operatorname{minimum} f\right.\)-value in OPEN \()\)
remove \(s\) with the smallest \([g(s)+h(s)]\) from \(O P E N\); insert \(s\) into CLOSED;
\(v(s)=g(s)\);
for every successor \(s\) ' of \(s\)
\[
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right) \\
& g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ; \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
\]
- \(g\left(s^{\prime}\right)=\min _{s^{\prime \prime} \in \operatorname{pred}\left(s^{\prime}\right)} v\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s^{\prime}\right)\)
- OPEN: a set of states with \(v(s)>g(s)\) all other states have \(v(s)=g(s)\)
- this A* expands overconsistent states in the order of their f-values

\section*{A* with Reuse of State Values}
- Making A* reuse old values:
initialize \(O P E N\) with all overconsistent states;
ComputePathwithReuse function
while \(\left(f\left(s_{\text {goal }}\right)>\operatorname{minimum} f\right.\)-value in OPEN \()\)
remove \(s\) with the smallest \([g(s)+h(s)]\) from \(O P E N\);
all you need to do to
make it reuse old values!) insert \(s\) into CLOSED;
\(v(s)=g(s)\);
for every successor \(s\) ' of \(s\)
\[
\begin{aligned}
& \text { if } g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right) \\
& g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ; \\
& \text { insert } s^{\prime} \text { into } O P E N ;
\end{aligned}
\]
- \(g\left(s^{\prime}\right)=\min _{s^{\prime \prime} \in \operatorname{pred}\left(s^{\prime}\right)} v\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s^{\prime}\right)\)
- OPEN: a set of states with \(v(s)>g(s)\) all other states have \(v(s)=g(s)\)
- this A* expands overconsistent states in the order of their f-values

\section*{A* with Reuse of State Values}

CLOSED \(=\{ \}\) OPEN \(=\left\{s_{4}, s_{\text {goal }}\right\}\) next state to expand: \(s_{4}\)
\(g\left(s^{\prime}\right)=\min _{s^{\prime \prime} \in \operatorname{pred}\left(s^{\prime}\right)} v\left(s^{\prime \prime}\right)+c\left(s^{\prime \prime}, s^{\prime}\right)\)
initially OPEN contains all overconsistent states

\section*{A* with Reuse of State Values}

CLOSED \(=\left\{s_{4}\right\}\) OPEN \(=\left\{s_{3}, s_{\text {goal }}\right\}\)
next state to expand: \(s_{\text {goal }}^{h}\)

\section*{A* with Reuse of State Values}
\[
g=1 \quad g=3
\]
\[
v=1
\]
\[
v=3
\]
\[
=\left\{s_{4}, s_{\text {goal }}\right\} \begin{aligned}
& g=0 \\
& v=0 \\
& h=3 \\
& \left.s_{3}\right\}
\end{aligned}
\]
\(C L O S E D=\left\{s_{4}, s_{\text {goal }}\right\}\) OPEN \(=\left\{s_{3}\right\}\) done

\section*{A* with Reuse of State Values}

we can now compute a least-cost path

\section*{A* with Reuse of State Values}
- Making weighted \(\mathrm{A} *\) reuse old values:
initialize \(O P E N\) with all overconsistent states;
ComputePathwithReuse function
while \(\left(f\left(s_{\text {goal }}\right)>\right.\) minimum \(f\)-value in OPEN \()\)
remove \(s\) with the smallest \([g(s)+\varepsilon h(s)]\) from OPEN; insert \(s\) into CLOSED;
\(v(s)=g(s)\);
for every successor \(s\) ' of \(s\)
if \(g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right)\)
\(g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right) ;\)
if \(s\) ' not in CLOSED then insert \(s\) ' into OPEN;

\section*{Anytime Repairing A* (ARA*)}
- Efficient series of weighted A* searches with decreasing \(\varepsilon\) :
set \(\varepsilon\) to large value;
\(g\left(s_{\text {start }}\right)=0 ; v\)-values of all states are set to infinity; OPEN \(=\left\{s_{\text {start }}\right\}\); while \(\varepsilon \geq 1\)

CLOSED \(=\{ \} ;\)
ComputePathwithReuse();
publish current \(\varepsilon\) suboptimal solution;
decrease \(\varepsilon\),
initialize \(O P E N\) with all overconsistent states;

\section*{ARA*}
- Efficient series of weighted \(\mathrm{A}^{*}\) searches with decreasing \(\varepsilon\) :
set \(\varepsilon\) to large value;
\(g\left(s_{\text {start }}\right)=0 ; v\)-values of all states are set to infinity; OPEN \(=\left\{s_{\text {start }}\right\}\); while \(\varepsilon \geq 1\)

CLOSED \(=\{ \} ;\)
ComputePathwithReuse();
publish current \(\varepsilon\) suboptimal solution;
decrease \(\varepsilon\),
initialize \(O P E N\) with all overconsistent states;

\section*{ARA*}
- Efficient series of weighted \(\mathrm{A}^{*}\) searches with decreasing \(\varepsilon\) :
initialize \(O P E N\) with all overconsistent states;
ComputePathwithReuse function
while \(\left(f\left(s_{\text {goal }}\right)>\operatorname{minimum} f\right.\)-value in OPEN \()\)
remove \(s\) with the smallest \([g(s)+\varepsilon h(s)]\) from OPEN; insert \(s\) into CLOSED;
\(v(s)=g(s)\);
for every successor \(s\) ' of \(s\)
if \(g\left(s^{\prime}\right)>g(s)+c\left(s, s^{\prime}\right)\)
\(g\left(s^{\prime}\right)=g(s)+c\left(s, s^{\prime}\right)\);
if \(s\) ' not in CLOSED then insert \(s\) ' into OPEN;
otherwise insert \(s\) ' into INCONS
- OPEN U INCONS = all overconsistent states

\section*{ARA*}
- Efficient series of weighted \(\mathrm{A}^{*}\) searches with decreasing \(\varepsilon\) :
set \(\varepsilon\) to large value;
\(g\left(s_{\text {start }}\right)=0 ; v\)-values of all states are set to infinity; OPEN \(=\left\{s_{\text {start }}\right\}\); while \(\varepsilon \geq 1\)

CLOSED \(=\{ \} ;\) INCONS \(=\{ \} ;\)
ComputePathwithReuse();
publish current \(\varepsilon\) suboptimal solution;
decrease \(\varepsilon\),
initialize \(O P E N=O P E N U\) INCONS;

\section*{ARA*}
- A series of weighted \(A^{*}\) searches

- ARA*
\(\varepsilon=2.5\)

13 expansions
solution=11 moves

15 expansions
solution=11 moves

1 expansion
solution=11 moves
\(\varepsilon=1.0\)

20 expansions
solution=10 moves

9 expansions solution=10 moves

\section*{What I will talk about}
- Graph representations (implemented as environments for SBPL)
- \(\quad 3 \mathrm{D}(x, y, \theta)\) lattice-based graph (within SBPL)
- 3D \((x, y, \theta)\) lattice-based graph for 3D \((x, y, z)\) spaces (within SBPL)
- Cart planning (separate SBPL-based package)
- Lattice-based arm motion graph (separate SBPL-based motion planning module)
- Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
- ARA* - anytime version of A*
- Anytime D* - anytime incremental version of A*
- \(\quad \mathrm{R}^{*}\) - a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

\section*{Anytime and Incremental Planning}
- Anytime D* [Likhachev et al., '2008]:
- decrease \(\varepsilon\) and update edge costs at the same time
- re-compute a path by reusing previous state-values
set \(\varepsilon\) to large value; until goal is reached

ComputePathwithReuse(); //modified to handle cost increases publish \(\varepsilon\)-suboptimal path;
follow the path until map is updated with new sensor information; update the corresponding edge costs;
set \(\mathrm{s}_{\text {start }}\) to the current state of the agent;
if significant changes were observed increase \(\varepsilon\) or replan from scratch;
else
decrease \(\varepsilon\);

\section*{Anytime and Incremental Planning}

\section*{- Anytime D* in Urban Challenge}
planning on \(4 D(<x, y\), orientation, velocity \(>)\) multi-resolution lattice using Anytime \(D^{*}\) [Likhachev \& Ferguson, '09]

part of efforts by Tartanracing team from CMU for the Urban Challenge 2007 race

\section*{Other Uses of Incremental A*}
- Whenever planning is a repeated process:
- improving a solution (e.g., in anytime planning)
- re-planning in dynamic and previously unknown environments
- adaptive discretization
- many other planning problems can be solved via iterative planning

\section*{What I will talk about}
- Graph representations (implemented as environments for SBPL)
- 3D \((x, y, \theta)\) lattice-based graph (within SBPL)
- 3D \((x, y, \theta)\) lattice-based graph for 3D \((x, y, z)\) spaces (within SBPL)
- Cart planning (separate SBPL-based package)
- Lattice-based arm motion graph (separate SBPL-based motion planning module)
- Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
- ARA* - anytime version of A*
- Anytime D* - anytime incremental version of A*
- \(\quad \mathrm{R}^{*}\) - a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

\section*{Heuristic Functions}
- 2D (x,y) Dijkstra's taking into account all obstacles for:
- 3D \((x, y, \theta)\) lattice-based graph
- \(\quad 3 \mathrm{D}(x, y, \theta)\) lattice-based graph for \(3 \mathrm{D}(x, y, z)\) spaces
- cart planning
- Angle distance to the fully open door for:
- door opening planning
- 3D (\(\mathrm{x}, \mathrm{y}, \mathrm{z}\)) Dijkstra's for the end-effector taking into account all obstacles for:
- lattice-based arm motion graph (separate SBPL-based motion planning module)

\section*{What I will talk about}
- Graph representations (implemented as environments for SBPL)
- 3D \((x, y, \theta)\) lattice-based graph (within SBPL)
- 3D \((x, y, \theta)\) lattice-based graph for 3D \((x, y, z)\) spaces (within SBPL)
- Cart planning (separate SBPL-based package)
- Lattice-based arm motion graph (separate SBPL-based motion planning module)
- Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
- ARA* - anytime version of A*
- Anytime D* - anytime incremental version of A*
- \(\quad \mathrm{R}^{*}\) - a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

\section*{Structure of SBPL}

\section*{Structure of SBPL}
\begin{tabular}{|c|c|c|}
\hline & ID's of start and goal states & \\
\hline \multirow[t]{2}{*}{Environment represented as a graph (\(\langle x, y, \theta>\) planning, arm planning, etc.) graph constructed on the fly} & ID's of successor states, transition costs,... heuristics & \multirow{3}{*}{Graph search (ARA*, Anytime D*, etc.) memory allocated dynamically} \\
\hline & & \\
\hline graph constructed on the fly & request for ID's of successors states and transition costs during graph search requests for heuristics plan as a sequence of state ID's & \\
\hline
\end{tabular}

\section*{Structure of SBPL}
- Look at Main.cpp for examples for how to use SBPL:
```

EnvironmentNAVXYTHETALAT environment_navxythetalat;
if(!environment_navxythetalat.InitializeEnv(argv[1], perimeterptsV, NULL))
{
SBPL_ERROR("ERROR: InitializeEnv failed\");
throw new SBPL_Exception();
}
if(!environment_navxythetalat.InitializeMDPCfg(\&MDPCfg))
{
SBPL_ERROR("ERROR: InitializeMDPCfg failedn");
throw new SBPL_Exception();
}
//plan a path
vector<int> solution_stateIDs_V;
bool bforwardsearch = false;
ADPlanner planner(\&environment_navxythetalat, bforwardsearch);
if(planner.set_start(MDPCfg.startstateid) == 0)
{
SBPL_ERROR("ERROR: failed to set start state\n");
throw new SBPL_Exception();
}
if(planner.set_goal(MDPCfg.goalstateid) == 0)
{
SBPL_ERROR("ERROR: failed to set goal state\n");
throw new SBPL_Exception();
}
planner.set_initialsolution_eps(3.0);
bRet = planner.replan(allocated_time_secs, \&solution_stateIDs_V);
SBPL_PRINTF("size of solution=%d\n",(unsigned int)solution_stateIDs_V.size());

```

\section*{What I will talk about}
- Graph representations (implemented as environments for SBPL)
- 3D \((x, y, \theta)\) lattice-based graph (within SBPL)
- 3D \((x, y, \theta)\) lattice-based graph for 3D \((x, y, z)\) spaces (within SBPL)
- Cart planning (separate SBPL-based package)
- Lattice-based arm motion graph (separate SBPL-based motion planning module)
- Door opening planning (separate SBPL-based package)
- Graph searches (implemented within SBPL)
- ARA* - anytime version of A*
- Anytime D* - anytime incremental version of A*
- \(\quad \mathrm{R}^{*}\) - a randomized version of A* (will not talk about)
- Heuristic functions (implemented as part of environments)
- Overview of how SBPL code is structured
- What's coming

\section*{What's coming}
- Planning in Dynamic Environments
- Planning for Spring-loaded Doors
- ROS package for \((x, y, \theta)\) planning while accounting for the whole body of PR2 in 3D \((x, y, z)\)

\title{
http://www.ros.org/wiki/sbpl
}

Thanks to Willow Garage for the support of SBPL!```

