3D object categorization, detection, and viewpoint classification

Final Presentation

Min Sun

EECS, University of Michigan at Ann Arbor

Mentor: Gary Bradski
Goal: Viewpoint Classification

Goal: Detection and Categorization
Approaches

• Discriminative Codeword (Random Forest), using Random Forest

• Hough voting for each viewing region
First Step: System implementation

- Using OpenCV and octave to re-implement the system
- Old system in Matlab: slow and not open source
- New system is fast and open source
- Speed-up detection from ~2 minutes to ~5 seconds for single object class
- Create a ROS node (rf_detector) to recognize object online
Challenges

• Need good shape descriptor for objects with less texture

• Need to have a multi-class object detector to detect multiple object classes at the same time
Second Step: system upgrade

• Exploring different shape features:
 1. Histogram Oriented Gradients (opencv)
 2. Geometric Blur (geometric_blur in ROS)
 3. Berkeley natural boundary (Nb) detector
Conclusion

• Hog has similar performance as Geometric blur+natural boundary detector (Nb)
• It takes 3 minutes to compute Natural boundary (Nb) for each image
• Hog is fast and almost the best

<table>
<thead>
<tr>
<th>Recall</th>
<th>Mouse</th>
<th>Stapler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gb+Nb</td>
<td>28%</td>
<td>37%</td>
</tr>
<tr>
<td>Hog+Nb</td>
<td>25%</td>
<td>45%</td>
</tr>
<tr>
<td>Hog</td>
<td>30%</td>
<td>35%</td>
</tr>
</tbody>
</table>
Second Step: system upgrade

- Multi-class Random Forest
Third Step: 3d information

• Using stereo depth to sample image patches corresponding to fix physical size to avoid scale search
• Using Dan’s shape spectral and spin image descriptors in descriptor_3d (ROS pkg)
• Combine both Hog and 3d descriptors
Data collection

- Table top object classes: mice, staplers, and mugs
- Collect aligned images and dense stereo point clouds
Multiple Views
Third Step: Results

mouse stapler mug

mouse stapler mug
Mouse
Stapler
Mug
Third Step: Comparison

<table>
<thead>
<tr>
<th>Feature</th>
<th>Average Precision</th>
<th>Classification Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>spin</td>
<td>0.213</td>
<td>0.2</td>
</tr>
<tr>
<td>shape</td>
<td>0.138</td>
<td>0.4</td>
</tr>
<tr>
<td>hog</td>
<td>0.635</td>
<td>0.73</td>
</tr>
<tr>
<td>hog+spin</td>
<td>0.612</td>
<td>0.7</td>
</tr>
<tr>
<td>Hog+shape</td>
<td>0.67</td>
<td>0.72</td>
</tr>
</tbody>
</table>
Working system

• Texture_light_on_off node aligns images w/o texture light and dense stereo point clouds
• Table top object detector (t2obj) segments out the point clouds of table top objects
• Finally, rf_detector recognizes object locations, classes, and viewpoints.
Results: mice

Recognition

Table top segmentation
Results: mugs

Recognition

Table top segmentation
Results: staplers

Recognition

Table top segmentation
Results

Recognition

Table top segmentation
Results

Recognition

Table top segmentation
Future work

• Train on 3d+image, Test on image only
 Use image patches of fix physical size to detect objects and infer the 3d position of the supporting image patches -> **Object Pop-Up**

• Vote for object center directly in 3d
 Make the model fully rotational invariant and more compact
Thank you