Visual SLAM

Helen Oleynikova

F. W. Olin College of Engineering

August 18th, 2010
What is Visual SLAM?

- **SLAM**
 - Simultaneous localization and mapping
 - Create a map of environment while localizing within that map

- **VSLAM vs. GSLAM**
 - 3D instead of 2D
 - Images instead of laser scans
Components

- Feature detection/matching
 - Find keypoints in image
 - Match to keypoints in other images
- Visual odometry
 - Pose estimation from matched features between images
- Sparse bundle adjustment (SBA)
 - Large-scale optimization on 3D point positions and camera poses
- Place recognition
 - Finding matches between current frame and a set of previous frames
 - Loop closure
System Overview

- **New image(s)**
 - Feature Matching
 - **Visual Odometry**
 - Pose Estimation
 - Short-term SBA
 - **VSLAM**
 - Place Recognition
 - Long-term SBA

- **Previous image(s)**
 - Camera pose estimate
 - Point position estimates

- **keyframe**
What I Did This Summer

• Learned about SBA, VSLAM, ROS, etc.
• API Revisions
 • Library-level design
 • Indexing structure
 • Representation of projections within SBA
• Documentation
• Released vslam stack to 0.1
What I Did This Summer

• ROS Integration
 • Standalone nodes
 • SBA
 • Stereo VSLAM
 • Visual Odometry
 • Integration with navigation stack
 • Publish odometry to robot_pose_ekf
 • Publish TF
• Pointcloud data integration
Results
Mapping
Mapping
Integrating Pointcloud Data

- Different sensors
 - LIDAR
 - SwissRanger
 - PrimeSense
- Multi-sensor fusion
 - Use pose estimates and constraints from different sensors
Point-to-point
- Matches between keypoints in images
 - Exact correspondence

Point-to-plane
- Matches between pointclouds
 - Points aren’t exact matches
Implementation

- **Point-to-point matches**
 - Cost measurement is reprojection error

- **Point-to-plane matches**
 - Consider only error in direction of the point’s normal
 - Allows the points to move freely within the plane
 - Requires that point matches be locally planar
 - Filter matches based on curvature

- **Use thin covariance matrix with error calculation**
 - Rotate covariance matrix
 - Easy implementation within existing system
Applications

• 3D odometry, localization, and mapping

• Model building
 • For small objects, use stereo views from different angles
 • For large objects, like rooms, use image and laser scan data
 • Pointcloud matching
Future Work

• Persistent map
• Pose-to-pose constraints
 • Use odometry estimates
• Whole-room registration
• Monocular pose estimation
• Release vslam stack to 0.2
Thank you!